Ответ к задаче 33


Для нахождения задуманных чисел надо запомнить таблицу:

последняя цифра 12 34 56 78
задуманные числа 1; 28; 9 7; 84; 5 5; 66; 7 3; 42; 3

Можно запомнить только меньшее из чисел второй строки таблицы. Если объявленная цифра равняется 1, 4, 5 или б (этими цифрами оканчиваются квадраты целых чисел), то она совпадает с меньшим из задуманных чисел. В остальных случаях меньшее из задуманных чисел равно дополнению объявленной цифры до 10. Обоснование.

Пусть задуманы числа k и k+1, где 1 ? k ? 8. Тогда произведение этих чисел равно k (k+1) = k2 + k.

Если из последнего результата вычесть меньшее из чисел – k, то получим k2. Возводя последовательно числа от 1 до 8 в куб, получаем:


13 = 1
23 = 8
33 = 27
43 = 64
53 = 125
63 = 216
73 = 343
83 = 512.

Каждое из полученных чисел оканчивается на одну из цифр от 1 до 8, и никакие два числа не оканчиваются на одну и ту же цифру. Поэтому, если помнить таблицу кубов чисел от 1 до 8, то по последней цифре куба некоторого числа можно сказать, какое число возводилось в куб.



Обратно к задачам

Сайт управляется системой uCoz