Лекция 10. Раздел 10.1
Второй замечательный предел.
Рассмотрим числовую последовательность , где , С ростом основание степени уменьшается до единицы, а показатель растет до бесконечности, поэтому ничего конкретного о поведении сказать нельзя.
Для вычисления воспользуемся выражением для бинома Ньютона:
В нашем случае
.Из полученного выражения следует, что с увеличением величина растет. Действительно, перейдем от к . Это приведет к тому, что число слагаемых возрастет на одно. Кроме того, величина множителей, заключенных в скобки, тоже возрастет, так как . Но если увеличивается число слагаемых и сами слагаемые растут, то . Значит, числовая последовательность монотонно возрастает.
Докажем теперь, что данная последовательность ограничена сверху. Заменим все скобки вида единицей.
Так как , то
.
Кроме того , ,..., . Значит,
.
В правой части неравенства после цифры 2 стоит убывающая геометрическая прогрессия. Как известно, сумма первых членов такой прогрессии равна: . В нашем случае . С ростом величина будет, очевидно, стремится к единице. Значит, , то есть, ограничено сверху.
Итак, мы получили, что . Но так как монотонно возрастающая последовательность ограниченная сверху, то она имеет предел:
Можно доказать, что данный предел справедлив не только для натуральных чисел, но и для любых значений :
.
Полученное выражение и называется вторым замечательным пределом.
Число используется для введения натуральных логарифмов. Такие логарифмы обозначаются , при этом .
Следствие 10.1.1.
.
В частности, если , то .
Следствие 10.1.2.
.
В частности, если , то .