Лекция 3. Раздел 3.2.
Свойства определителей.

Рассмотрим ряд свойств, которыми обладают определители и которые позволяют существенно упростить процесс их вычисления.

1. Равноправность строк и столбцов.

Определение 3.2.1. Транспонированием определителя называется операция, в результате которой меняются местами строки и столбцы с сохранением порядка их следования.

Определитель, полученный в результате транспонирования, называется транспонированным по отношению к исходному и обозначается .

Свойство 3.2.1. При транспонировании величина определителя сохраняется, то есть .

Доказательство этого свойства вытекает из того, что разложение определителя по первой строке тождественно совпадает с разложением по первому столбцу. Данное свойство указывает на равноправность строк и столбцов, поэтому все дальнейшие свойства можно рассматривать лишь для строк.

2. Антисимметрия при перестановке двух строк.

Свойство 3.2.2. При перестановке местами двух строк определитель сохраняет свою абсолютную величину, но меняет знак на противоположный.

Докажем для определителя второго порядка. Действительно,

; .

Для определителя -го порядка докажем это свойство по индукции. Пусть свойство справедливо для определителя -го порядка. Разложим определитель -го порядка по любой строке, отличной от переставленных. Тогда переставленные строки входят во все миноры, на которые умножаются элементы , но эти миноры являются определителями -го порядка и меняют свой знак при перестановке строк. Следовательно, и определитель -го порядка также меняет свой знак.

3. Линейное свойство определителя.

Определение 3.2.2. Некоторая строка определителя ( ) является линейной комбинацией строк ( ) и ( ) с коэффициентами и , если .

Пользуясь этим определением, перейдем к самому свойству.

Свойство 3.2.3. Если в определителе -го порядка некоторая строка ( ) является линейной комбинацией двух строк ( ) и ( ) с коэффициентами и , то , где – определитель, у которого -ая строка равна ( ), а все остальные – те же, что и у , а – определитель, у которого -ая строка равна ( ), а все остальные – те же, что и у .

Для доказательства разложим каждый из определителей по -ой строке. Очевидно, что у всех разложений миноры соответствующих элементов будут одинаковы. Вычислим :

Итак, свойство доказано. Очевидно, оно справедливо и для столбцов.

Приведенные три свойства называются основными. Остальные являются их следствиями.

Свойство 3.2.4. Умножение всех элементов некоторой строки или столбца определителя на число равносильно умножению определителя на число .

Для доказательства положим в свойстве 3.2.3 , тогда получим . Значит, общий множитель всех элементов некоторого ряда можно выносить за определитель.

Свойство 3.2.5. Если все элементы некоторой строки или столбца определителя равны 0, то и сам определитель равен 0.

Для доказательства разложим определитель по нулевому ряду.

Свойство 3.2.6. Определитель с двумя равными строками или столбцами равен 0.

Действительно, переставив местами равные строки или столбцы, получим тот же определитель, но по свойству 3.2.2 его знак изменится на противоположный. Итак, с одной стороны , а с другой . Следовательно, .

Свойство 3.2.7. Если соответствующие элементы двух строк или столбцов определителя пропорциональны, то определитель равен нулю.

Действительно, согласно свойству 3.2.4 общий множитель можно выносить за определитель, и мы получим определитель с двумя равными строками, который по свойству 3.2.6 равен нулю.

Свойство 3.2.8. Если к элементам некоторой строки или столбца определителя прибавить соответствующие элементы другой строки или столбца, умноженные на произвольный множитель , то величина определителя не изменится.

Доказательство. Рассмотрим определитель . Прибавим к элементам второй строки элементы первой с коэффициентом : . Тогда, по свойству 3.2.3 получим:

.

Пользуясь свойствами, любой определитель можно вычислить не на основании основного правила, а предварительно упростив его (приводя, например, к треугольному виду).


Сайт управляется системой uCoz