Лекция 7. Раздел 7.2
Система однородных линейных алгебраических уравнений

Важное место среди всех систем линейных алгебраических уравнений занимают однородные системы с произвольными и :

Данные системы всегда совместны, так как обязательно имеют решение вида , которое называется нулевым или тривиальным.

Если , то, согласно теореме 7.1.1, это решение будет единственным. В частности, в случае однородной невырожденной квадратной системы ее единственное решение будет тривиальным.

В случае, когда ранг матрицы системы меньше числа неизвестных, то решений, согласно теореме 7.1.2, будет бесконечное множество. Пусть в этом случае матрицы - столбцы , ,..., являются некоторыми решениями системы:

, ,..., .

Тогда выражение будет называться их линейной комбинацией. Очевидно, что можно ввести понятие линейно зависимой и линейно независимой системы этих решений. Необходимо иметь в виду, что линейная комбинация решений системы линейных алгебраических уравнений также будет ее решением. Действительно,

Теорема. Если ранг матрицы однородной системы линейных алгебраических уравнений меньше числа неизвестных, то есть , то существует линейно независимых решений системы , ,..., , а любые другие решения можно представить как их линейную комбинацию.

Доказательство. Пусть ранг основной матрицы системы . Тогда базисными неизвестными будут , а остальные неизвестных будут свободными. В этом случае произвольное решение системы можно записать в виде:

.

Здесь – произвольные числа, а однозначно определяются из системы для выбранных .

Рассмотрим следующих решений системы:

, ,..., .

По аналогии с результатом п. 6.3 все они линейно независимы, и произвольное решение системы можно представить в виде:

,

что и требовалось доказать.

Определение. Фундаментальной системой решений однородной системы линейных алгебраических уравнений называется совокупность всех ее линейно независимых решений.

Если в фундаментальной системе решений свободные неизвестные по очереди выражаются через единицу, в то время как остальные равны нулю, то такая фундаментальная система решений называется нормированной.


Сайт управляется системой uCoz